Our CTO (Luke Cole) previously worked for Hemisphere GPS (orginally called BEELINE, and now bought out by AgJunction) as a "Robotics Engineer" implementing auto-guidance solutions for various quadbikes and agriculture tractors that was used by 100's of vehicles around the world.

For 10 years, starting as a teenager in 1998 - Luke Cole has also worked for leading research institutes and companies such as NICTA (now called CSIRO Data61), CSIRO, Seeing Machines and ANU Robotics System Lab (lead by Alex Zelinsky, who received a rare prestigious AO award in 2017 and was Defence Scientist of Australia from 2012 for 6 years). Luke's worked included various autonomous mobile robot projects, involving computer vision, and even a self-driving car early 2000's. Back then OpenCV and ROS didn't exist, so we did a "roll-your-own" called VisLib and DROS comprised of 364,578 lines of code.

Lance Cole has also worked at NICTA and has a background of various hardware development, such as working for a contract company to the US millary (EOS), building the Common Remotely Operated Weapon Station (CROWS).

We have a long-standing robotics experience - our engineers offering Sydney Robotics Prototyping, robot development and robotics custom software services have something like a combined 50 years worth of experience in the robotics field, from teleoperated and semi-autonomous mobile robotic applications, to custom software and/or custom hardware for general automation solutions, signal processing and control systems. Our knowledge base started in NSW and ACT, but now we primarily service East Coast Queensland.

We have developed autonomous mobile robots for air, underwater and ground. Our professional experience started with developing various control and sensor systems for small underwater vehicles in the late 1990's. We where fortunate enough to have been involved in one of the first self-driving car R&D projects back in early 2000's using a 4WD (to support computers for the large processing requirements). For an overseas client we developed a low profile (70mm high) semi-autonomous mobile robot platform for manikin/dummy mounting to simulate people moving (for vehicle crash safety and collision development by German R&D car manufactures). We have been fortunate enough to have been invited to the bulk of the German R&D car manufactures where they develop and test self-driving and driver assist development systems. We have developed various solutions for 2cm accuracy precision steering-guidance solutions for various types of Agriculture tractors (via the CAN bus and ad-hoc methods), which are still used by 1000's of tractors all over the world. We have retro fitted Quadbikes to allow semi-autonomous control via GPS way points. We have custom developed various indoor mobile robotics for indoor localistion and SLAM R&D purposes.

Robot navigation is the task where an autonomous robot moves safely from one location to another. This involves three primary questions:

  1. “Where am I?” which is known as robotic localisation (hard).
  2. “Where am I going?” which is known as goal recognition (typically provided by a human).
  3. “How do I get there without collisions?” - path planning (easy) and obstacle avoidance (hard).

For robotic localisation and obstacle avoidance we use sensors to solve the problem. To move along the planned path, we use control systems.

We have a deep understanding of signal processing and sensors of various types. We appreciate sensing is a hard problem. There is no one-size-fits all solution. Odemetry (wheel encoders) provide a cost-effective method to measure relative position. however suffer from wheel slip and errors are accumlate over time. GPS only works outdoors, effected by trees/buildings, and without a nearby basestation (for expensive DGPS/RTK) the absolute position error is several meters. IMU (accelerometers + gyros + Magnetometer) suffer from drift errors and noise error causing ``random walk'' when integrated. Magnetometer are effected by magnets, are slow to respond and measure magnetic north (not true north). Infrared are cost-effective, but short range and saturated by sunlight. Ultrasonic range sensors are cost-effective and good for detecting large objects, but can't detect glass/water, only measure a few metres, have a wide beam and provide medium accuracy. RADAR uses radio (instead of sound) to detect objects at long distance, but are relative more expensive then ultrasonic range sensors. Image sensors (video cameras) are a cost-effective, rich in information, and two or more can get depth information, but are computationally expensive, hard to process the data (aka computer vision), affected by dust/fog/rain, and light variations. LIDAR are high accuracy (about 1mm), however are expensive (prices are coming down every year), but can't detect glass/water. Distance measurement sensors are easy to interpret, other sensors are hard. Colour constancy and object classification is very hard (e.g. “Is it a tree or a human?”).

We have a deep understanding of control systems. We typically use Linux-based SBC's and a program a custom PID controller - perhaps even a cascade PID controller, bayesian filters, particle filters, kalman filters, Monte Carlo methods, or train a deep neutral network. The outputs of these systems might control various types of motors (e.g. brushed, brushless, servo, steppers) and/or various types of actuators (e.g. linear, pneumatic, hydraulic), and/or other things like lights or speakers.

We have been involved with computer vision and machine vision since early 2000's - we where involved in the development of two computer vision libraries before OpenCV became popular. Have done much biologically inspired techniques such as optical flow. Was involved in the early days of artificial intelligence using techniques such as Local Binary Patterns (LBP) and Haar-like features (HAAR). These days we typically use machine learning methods such as designing and training deep neural networks (outstanding for vision-based object recognition using ImageNet).

We where involved in the development of a robotic operating system which had 364,578 lines of code, before ROS was written.

We have developed custom software for various manipulators, and have a good understanding of forward and inverse kinematics.

We appreciate that challenges with robotics - particularly with robot navigation, computer/machine vision, and manipulation with the real-world, in real-time using real-robots.

We are confident with a broad range of skills and confident our Sydney Robotics Prototyping services can offer solutions such as:

These technologies can be used for various applications such as:

Some of our Robotics Development Experience

Information About Sydney

Sydney is the most populous city in Australia, with a metropolitan area population of 4,119,190, and 151,920 in the City of Sydney, as of the 2006 census. Sydney is the state capital of New South Wales, and is the site of the first European colony in Australia, established in 1788 at Sydney Cove by Arthur Phillip, leader of the First Fleet from Britain. A resident of the city is referred to as a Sydneysider.

Sydney is located on Australia's south-east coast. The city is built around Port Jackson, which includes Sydney Harbour, leading to the city's nickname, "the Harbour City". It is Australia's largest financial centre and the economic capital, home to many national headquarters of corporations, including the Australian Stock Exchange. Sydney's leading economic sectors include property and business services, retail, manufacturing, tourism and health and community services.

Sydney is a major international tourist destination, often referred to as the international gateway of Australia, and is notable for its beaches and twin landmarks: the Sydney Opera House and the Harbour Bridge. The metropolitan area is surrounded by national parks, and contains many bays, rivers and inlets. It has been recognised as a global city by the Loughborough University group. The city has played host to numerous international sporting events, including the 1938 British Empire Games, 2000 Summer Olympics and the 2003 Rugby World Cup. In 2008, Sydney will also host the 23rd Roman Catholic World Youth Day.

Sydney is one of the most multicultural cities in the world which reflects its role as a major destination for immigrants to Australia. According to the Mercer cost of living survey, Sydney is Australia’s most expensive city, and the 21st most expensive in the world.

Our Clients

COLETEK Amazing Customer Testimonials

We met with Luke Cole from COLETEK and very quickly realised that he was very knowledgeable in robotics and prototyping. What separates his company from the rest, is that he had a unique value proposition - COLETEK offers a tele-operated / robotic unit for rent and with the flexibility to be modified to build proof-of-concepts. That unit lowered both the cost and time for us to produce a video showing a very challenging concept. In general COLETEK's service was great value. We would recommend them - they will get it done.

thumb Miguel Araos
Mining3, Brisbane

We engaged COLETEK to conduct a series of research projects on robotics and we very pleased with their technical skill, creative thinking and hard work. If you need to prototype a complex technical idea, they are a great partner to work with.

thumb Stephen Phillips
Mawson Ventures, Brisbane

COLETEK has been providing us with machining solutions for intricate and bespoke spacecraft designs. The team are very professional and always approachable with quick responses to ensure our needs are met. COLETEK offers a competitive solution on price and lead time and we have yet to give them a real challenge so it seems!

Andrin Tomaschett
ADFA & UNSW Canberra Space

Intuitive, innovative & efficient are three words that would appropriately describe the COLETEK service. Luke and the team at COLETEK have taken our concepts to the next level.

thumb Alan Hay
Boylan Group, Sydney

We had the pleasure of doing business with COLETEK who provided us with service work. Their level of service and the quality of their work is exceptional. They communicated with us through the entire process to let us know when the work would be completed. We are very happy to have worked with them.

thumb Steve Sennett
RPX Technologies Inc., Oklahoma, USA

Delivered excellence on time, great work and great team, thanks!

thumb Alexander Tietge

Great delivery, and great relationship orientated services.

thumb Damian Carrell
AEDesign (Pvt) Ltd, Pakistan, Germany